Kanske är det klipp och klistrandet som utgör skillnaden

När man säger att en gen ”uttrycks” eller att den ”är aktiv” betyder det att informationen överförs från DNA:t till ett budbärar-RNA (mRNA = messenger RNA) för att sedan översättas till ett protein.

DNA -> mRNA -> Protein

Francis Crick kallade detta för den centrala dogmen inom molekylärbiologin, och detta enkla 1:1:1 förhållande har utgjort grunden för i princip all molekylärbiologi ända sedan dess. Tyvärr är biologi sällan så enkelt i verkligheten, och det gäller även denna process. En gen ger nämligen oftast inte upphov till ett protein, utan till många. Och då menar jag inte bara att det bildas många likadana proteinmolekyler, utan även att en gen faktiskt kan ge upphov till flera olika sorters proteiner.

I eukaryoter och arkéer består gener av exoner och introner. Exonerna är de delar av DNA:t som innehåller själva instruktionerna för hur proteinet ska byggas. Intronerna däremot används inte för att göra proteiner utan klipps bort från mRNA-molekylerna innan dessa är färdigtillverkade. Vad intronerna har där att göra, när de ju ändå bara klipps bort, är inte helt klarlagt. Ibland kan de innehålla information som avgör när och var genen är aktiv, men oftast verkar de inte göra någonting alls.

Saken är den att när intronerna vSplicing_overviewäl har klippts bort kan exonerna klistras ihop igen på flera olika sätt. Detta kallas alternativ splitsning, vilket är en försvenskning av alternative splicing, och illustreras av figuren till vänster (från Wikipedia) där boxarna i pre-mRNA:t är exoner och de tjocka strecken mellan dem är introner. Genom att sätta ihop olika kombinationer av exoner får man två olika mRNA:n och därmed två olika proteiner. Dessutom händer det ibland att inte alla introner verkligen klipps bort, vilket ger ännu fler pusselbitar att leka med. Den mer korrekta varianten av dogmen ska alltså snarare vara:

DNA -> flera olika mRNA:n -> flera olika proteiner

Hittills har forskarna generellt ganska dålig koll på vad detta alternativa splitsande egentligen har för betydelse. De flesta har istället satsat hårt de senaste åren på att mäta och jämföra hur mycket mRNA som bildas från olika gener i alla upptänkliga vävnader av alla möjliga utvecklingsstadier hos mer eller mindre alla organismer man fått tag i. Normalt skiljer forskarna då inte på olika varianter av mRNA från samma gen, utan mäter allihopa tillsammans och kallar det för ”nivån på genaktiviteten”.

Vi har vetat ett bra tag nu att alla ryggradsdjur har ganska lika arvsmassor med ungefär samma gener. Inte heller verkar det finnas några markanta skillnader i nivån på genaktiviteten mellan motsvarande organ i olika sorters ryggradsdjur. I alla fall inte tillräckligt stora skillnader för att kunna förklara varför olika ryggradsdjur faktiskt ser ganska olika ut. Men kanske har man mätt fel saker?

I en artikel som publicerades förra året i Science presenterade 17 st forskare att de upptäckt att det finns tydliga skillnader i alternativ splitsning mellan samma organ i olika ryggradsdjur. De mätte både den alternativa splitsningen och nivån på genaktiviteten i flera olika organ i människa, schimpans, orangutang, makak, mus, pungråtta, näbbdjur, kyckling, ödla och groda. Det visade sig dels att alternativ splitsning var vanligare i primater än i de övriga ryggradsdjuren och dels att den alternativa splitsningen var artberoende snarare än organberoende. Tvärtom mot nivån på genaktiviteten som var organberoende snarare än artberoende. Dessa resultat antyder att vi kanske borde ägna mer tid åt att studera alternativ splitsning och mindre tid åt att mäta mängden av olika geners mRNA om vi vill förstå vad som egentligen skiljer de olika ryggradsdjuren åt. Möjligen gäller också samma sak för växter?

Referens: Barbosa-Morais m.fl. (2012) The Evolutionary Landscape of Alternative Splicing in Vertebrate Species. Science 338, s.1587

Pollineringens historia

Att blommo2009_08020166rnas och insekternas evolution har följts åt och drivit på varandra är ingen nyhet, men hur uppstod detta samarbete? Darwins klassiska teori om naturligt urval fungerar utmärkt för att förklara varför samarbetet mellan blommor och pollinerare fortsatte och utvecklades vidare när det väl uppstått, men förklarar inte hur och när samarbetet uppstod till att börja med.

Naturligt urval innebär i korthet att de individer som är bäst anpassade till sin livsmiljö är mest sannolika att få barn som i sin tur överlever till vuxen ålder och själva blir föräldrar. Naturligt urval är en konsekvens av två saker. Att resurserna inte är oändliga och att olika individer av samma art inte är helt identiska och därmed inte har samma förutsättningar. Dessa två observationer kan verka självklara, men dessa enkla insikter har ofta ignorerats och förnekats av religiösa och ideologiska skäl.

Ofta förutsätts det att insektspollinering var en innovation som uppstod med blommorna. Det stämmer inte. De nakenfröiga växterna har också pollen som behöver föras till fröämnena i honkottarna. Idag är barrträd och ginkgo undantagslöst vindpollinerade, men både kottepalmer och gnetaler är insektspollinerade.

Gnetaler producerar söta pollineringsdroppar både han- och honkottar, vilket lockar pollinerare. Kottepalmer producerar också pollineringsdroppar, men de är inte lika söta. Deras pollinerare äter istället pollen och andra växtdelar. Möjligen lockas insekterna till kottarna av att pollineringsdropparna luktar gott (om man är en insekt). Även barrträd och ginkgo har pollineringsdroppar. De utsöndras från fröämnena och används för att suga in pollen i själva fröämnet och att för att få pollenkornen att gro.

Den äldsta fossila växten med anpassningar som associeras med insektspollinering var en fröormbunke som levde under karbonperioden. Insektspollinering blev dock aldrig något dominerande mode bland fröormbunkar som generellt föredrog vindpollinering. Även under Mesozoikum var kottepalmer och gnetaler insektspollinerade, och under senare delen av perioden dök ju blomväxterna också upp, men under Mesozoikum fanns dessutom insektspollinerade barrträd (specifikt familjen Cheirolepidiaceae) och bennettiter. Bennettiterna var en utdöd grupp av fröväxter som hade tvåkönade kottar och två integument i fröämnena. Eftersom deras kottar påminde en aning om blommor har de ofta kopplas till blomväxternas evolution, men hur det ligger till med den saken är inte avgjort.

De nakenfröiga växterna använde alltså insektspollinering långt innan det fanns några blommor. De använder dessutom åtminstone delvis samma sorts signaler som blommorna för att locka pollinerare. Den uppenbara slutsatsen är därför att blomväxterna sannolikt helt enkelt övertog sina pollinerare från de nakenfröiga växterna. Blommornas insektspollinering var inte alls någon innovation! Blomväxterna övertog och vidareutvecklade ett samarbete som redan var gammalt och väl inarbetat. Att blomväxterna och insekterna sedan tillsammans tagit detta samarbete till helt nya höjder är en annan historia.

Kommentar: Gnetaler är mitt egenpåhittade namn på växter i ordningen Gnetales, vilken idag består av de tre släktena Gnetum, Ephedra och Welwitschia. Så vitt jag vet finns det inget etablerat svenskt namn på ordningen, vilket behövs om man ska kunna prata om fröväxternas evolution på svenska.

Referens: Labandeira m.fl. (2007) Pollination drops, pollen, and insect pollination in Mesozoic gymnosperms. Taxon 56, s. 663 (tips: googlar du lite kan du hitta denna artikel som gratis pdf)

Ett nytt kapitel i Kordiljärernas historia

Längs hela västra Amerika ligger ett band av bergskedjor. Dessa inkluderar t.ex. Klippiga bergen, Sierra Nevada och Anderna. Hela bandet av bergskedjor kallas med ett gemensamt namn för Kordiljärerna. De nordamerikanska Kordiljärerna antas ha bildats huvudsakligen genom att den kontinentalplatta som Nordamerika ligger på krockade med en oceanisk platta som kallas Farallon. Farallon trycktes ner under den lättare nordamerikanska plattan, och i samband med detta ska landfragment som t.ex. vulkaniska öbågar ha skrapats av från ytan av Farallon och knycklats ihop till bergen i västra Nordamerika. Kollisionen pågår faktiskt fortfarande. Sydamerikas berg ska ha bildats på motsvarande sätt, fast Sydamerika ligger på en annan kontinentalplatta.

Nu har det publicerats en ny studie i Nature där Karin Sigloch och Mitchell G. Mihalynuk hävdar att denna modell är för enkel och att den inte räcker för att kunna förklara hur de nordamerikanska Kordiljärerna har bildats. Genom att studera hur seismiska vågor rör sig genom jorden kan man skapa en sorts bild av strukturer som finns långt nere under jordytan. Sigloch och Mihalynuk har upptäckt att det under USA finns avlånga bergsblock som är upp till 2000 km långa, står i princip vertikalt rakt upp och sjunker rakt ner mot jordens mitt. Att dessa block är vertikala tolkar forskarna som att de bildats när en oceanisk platta sjunkit ner i jordens inre (s.k. subduktion) under en vulkanisk öbåge som legat på ett och samma ställe under en lång tid.

Detta stämmer inte riktigt med den rådande teorin, som säger att subduktionszonen med sin vulkanism borde ha varit kollisionszonen mellan Farallon och Nordamerika, och att denna borde ha förflyttats kontinuerligt västerut av den nordamerikanska kontinentens rörelse. Blocken borde därför luta eftersom subduktionzonen borde ha flyttat på sig mellan bildningen av den övre och den undre delen av blocken. Dessutom verkar blocken vara av fel ålder för att passa in i den rådande förklaringsmodellen. För att ytterligare komplicera saken så finns det tecken i själva bergen på att de nordamerikanska och de sydamerikanska bergskedjorna kanske inte bildats riktigt på samma sätt, för de nordamerikanska bergen som verkar innehålla resterna av en massa gamla öbågar och mikrokontinenter som tillkommit under de senaste 200 årmiljonerna. Motsvarande spår har inte hittats i de sydamerikanska bergen.

Sigloch och Mihalynuk anser att deras upptäckter inte passar in i den rådande förklaringsmodellen, utan de förslår en mer komplicerad modell för vad som egentligen pågått i västra Stilla havet under de senaste ca 200 årmiljonerna. Deras hypotes involverar två tidigare oupptäckta oceaniska plattor som de kallar Angayucham och Mezcalera som ska ha legat mellan Farallon och Nordamerika. Dessa plattor ska först ha krockat med Farallon, vilket långt ute till havs ska ha gett upphov till vulkaniska öbågar och till de vertikala sjunkande blocken. Först långt senare kom krocken mellan Farallon och Nordamerika där toppen av de gamla öbågarna skrapades av och till slut inbakades i Kordiljärerna. Denna artikel utgör knappast sista ordet i berättelsen om hur Kordiljärerna har bildats, men det är viktigt att komma ihåg att den vetenskap som gett upphov till denna typ av teorier faktiskt bara är ca 50 år gammal.

Idén om att kontinenterna kan ha flyttat på sig är i sig inte ny. Redan i början av 1900-talet myntade Alfred Wegener begreppet kontinentaldrift och föreslog att det en gång existerat en superkontinent som han kallade Pangaea. Tyvärr hade han ingen trovärdig förklaring på hur kontinenterna skulle kunna röra på sig, så det hela uppfattades som en absurd idé. Det var inte förrän man på 1960-talet upptäckte oceanbottenspridningen som den gamla idén om att kontinenterna faktiskt rör på sig till slut fick sitt vetenskapliga genombrott och började studeras på allvar. Idag pratar man inte om kontinentaldrift utan om plattektonik, som alltså är en relativt ny vetenskap. Grundtanken i plattektonik är att jordens yta är uppdelad i ett antal plattor som både land och hav vilar på. Plattorna rör på sig, drivna av krafter i jordens inre, och kan både nybildas och brytas ner. Plattektoniken som vetenskap är ungefär jämngammal med gentekniken och den moderna molekylärbiologin, och har på bara ett par generationer helt förändrat hur vi ser på jorden och på livets historia.

Källor:

Sigloch & Mihalynuk (2013) Intra-oceanic subduction shaped the assembly of Cordilleran North America. Nature 496, s. 50

Saskia Goes (2013) Western North America’s jigsaw. Nature 496, s. 35. (kommentar till artikeln)

Alexandra Witze. How the West was built. Nature News, 3 April 2013. (kommentar till artikeln)

Hur jättebläckfisken blev filmstjärna

En av de mest kända händelserna i vetenskapsvärlden under det senaste året är att forskare för första gången lyckats filma jättebläckfisken i sin naturliga miljö. Jättebläckfisken antogs länge vara ett mytologiskt sagomonster snarare än ett riktigt djur, och ännu idag vet forskarna mycket lite om jättebläckfiskar.

TED berättar Edith Widder hur det gick till när de lyckades filma jättebläckfisken. Och ja, jättebläckfisken är med i videon.

Bokrecension: Ond kemi

Populärvetenskapliga böcker om kemi är inte direkt särskilt vanliga. Tror bara jag har läst en: Ond kemi – berättelser om människor, mord och molekyler av Ulf Ellervik. Jag tycker egentligen att titeln är lite missvisande. Den ger associationer till missbruk av vetenskap, men mycket av boken handlar istället om vardagens kemi.

Ulf skriver en hel del om kemin bakom olika lukter och smaker. Exempelvis tar han upp varför människor ofta uppfattar samma lukt eller smak på väldigt olika sätt. Vad som händer om man dricker för mycket vatten och hur sillinläggningar fungerar är andra exempel på vad som finns med. Lite mer onda aspekter på kemi saknas i och för sig inte. Ulf skriver också om droger, gifter och sprängämnen.

Boken är väl värd att läsa. Jag hoppas det dyker upp fler liknande böcker på svenska. Den enda andra bok jag känner till är En dos stryknin av Olle Matsson om giftmord i litteraturen. Den boken har jag inte läst ännu, har bara hört Olle prata om boken på Kulturnatten.

Kom de brasilianska indianerna från Polynesien?

Den etablerade teorin om hur människan kom till Amerika är att folk vandrade från Sibirien in i nuvarande Alaska under den senaste istiden. Sedan fortsatte de bit för bit längre ner längs kontinenten. Den finns dock de som hävdar att människor även kommit direkt över Stilla havet till Sydamerika, utan att passera genom Nordamerika på vägen. Den senare teorin är betydligt mer kontroversiell.

Jag blev därför väldigt nyfiken när det för några dagar sedan dök upp en ny artikel i PNAS som stolt fastslår att författarna har analyserat DNA från skallar från en utdöd brasiliansk indianstam och hittat en DNA-profil som är typisk för polynesier. Det låter ju spännande. Kom dessa indianer möjligen från Polynesien? Det börjar bra, och den inledande sammanfattningen verkar lovande.

Forskarna har undersökt DNA ur tänder från 14 skallar de hittat på ett museum. Skallarna kom från indianer ur Botocudostammen som bodde i vad som numera är delstaten Minas Gerais i Brasilien. Det ursprungliga syftet med undersökningen var att försöka ta reda på om Botocudoindianerna härstammade från en korsning mellan två olika förhistoriska grupper av indianer som kännetecknades av olika huvudform (av alla saker!). De undersökte dock bara Botocudoindianer. De försökte inte få fram DNA ur skelett från någon av de två tänkta ursprungsbefolkningarna, så det är lite oklart hur de hade tänkt åstadkomma sitt mål. Vad hade de egentligen tänkt jämföra Botocudoindianernas DNA-profiler med? Hur som helt, av de 14 individerna hade 12 en DNA-profil som är typisk för dagens amerikanska indianer i största allmänhet. De var inte särskilt spännande, och forskarna struntade därefter i dem. Två av männen däremot visade sig vara mycket intressanta.

De hade en DNA-profil som man vanligen hittar i nutida polynesier. DNA från två tänder vardera från båda individerna analyserades i ett brasilianskt laboratorium och ytterligare en tand från en av skallarna skickades till ett danskt laboratorium för kontroll av resultatet. Allt verkar vara som det ska. Det skulle vara lätt att här hävda att forskarna nu visat att människor kommit till Sydamerika från Polynesien. Men är det verkligen sant? Forskarna säger själva i slutet av artikeln att de inte vet hur det egentligen kommer sig att de två männen hade en sådan märklig DNA-profil, men att de har en del idéer om saken.

En viktig detalj i sammanhanget är att skallarna kom till museet 1890 och är med största sannolikhet från slutet av 1800-talet. De är alltså inte särskilt gamla! Skallar från 1800-talet kan knappast användas för att dra slutsatser om de sydamerikanska indianernas ursprung. Det framgår ingenstans varför forskarna valde att studera skelett från 1800-talet trots att syftet egentligen var att studera något som ska ha skett långt innan européerna kom till Amerika. Två personers DNA-profil (hur märklig den än är) är dessutom inte tillräckligt för att kunna säga särskilt mycket om indiangruppens ursprung, även om skallarna hade varit mycket äldre. För att göra det hela ännu mer komplicerat så befolkades Polynesien åtskilliga årtusenden efter Sydamerika. Alltså borde inte Sydamerikas indianer kunna komma från Polynesien.

I princip så är det naturligtvis möjligt att människor tagit sig från Polynesien till Brasilien långt senare och att deras ättlingar sedan levt kvar i Brasilien, men varför finns det då inga spår av dem på andra sidan Anderna? Den sidan ligger ju närmare till om man kommer från Polynesien. En grupp polynesier levde faktiskt som slavar i Peru under en period på 1800-talet, men inget tyder på att de någonsin var i Brasilien och de återvände dessutom till Polynesien när slaveriet avskaffades.

Samma DNA-profil som är karaktäristisk för polynesier förekommer dock också hos människor från Madagaskar, även om den är ovanligare där. Tusentals slavar fördes illegalt från Madagaskar till Brasilien under den första halvan av 1800-talet, och några av dessa kom att arbeta tillsammans med indianer från Botocudostammen på plantagerna. DNA:t som forskarna analyserat är mitokontrie-DNA, som bara ärvs från mamman och inte från pappan. Så de två indianernas DNA-profil skulle kunna förklaras med att (åtminstone) en slavkvinna från Madagaskar fått barn med (åtminstone) en man ur Botocudostammen. Forskarna spekulerar i att indianerna kan ha kidnappat slavkvinnor, eller att slavkvinnor kan ha rymt och sökt skydd hos indianerna. Skallarna är troligen från andra halvan av 1800-talet och slavhandeln från Madagaskar ökade kraftigt efter 1809. Det kanske mest sannolika scenariot är alltså att de två brasilianska indianerna var barn, barnbarn eller möjligen barnbarnsbarn till en madagaskisk slavkvinna med denna relativt ovanliga madagaskiska DNA-profil.

Referens: Vanessa Faria Gonçalves m.fl. Identification of Polynesian mtDNA haplogroups in remains of Botocudo Amerindians from Brazil. PNAS, publicerad online (innan tryck) den 1 April 2013. DOI: 10.1073/pnas.1217905110

Växterna frodas när Sverige värms upp

Att jordens klimat i genomsnitt blir allt varmare har väl inte gått någon förbi. Och särskilt snabbt går det längst upp i norr, även om det inte alltid känns så när man väntar på att våren ska komma. Man kan ju tycka att ett varmare klimat borde innebära att fler växter trivs här uppe i Norden, och att de dessutom borde växa bättre. Men har detta hänt i verkligheten eller är det bara önsketänkande?

Forskare från ett flertal länder publicerade nyligen en artikel i Nature Climate Change om detta. De har studerat hur växternas tillväxt och temperaturskillnaden mellan årstiderna har förändrats på de norra delarna av jordklotet över 30 år, från 1982 till 2011. De skiljde på det boreala området (65-45 grader nordlig latitud plus skogen längre norrut) och det arktiska området (från 45 grader nordlig latitud till norra ishavet plus tundra längre söderut). De använde sig dels av mätningar på själva marken och dels av satellitbilder, och förändringarna de fann visade sig vara stora.

Temperaturskillnaden mellan sommar och vinter i de arktiska områdena 2011 liknade de som rådde 4 breddgrader längre söderut 30 år tidigare. För de boreala områdena motsvarade skillnaden 5 breddgrader. För vegetationens tillväxt var motsvarande siffror 7 breddgrader för de arktiska och 6 breddgrader för de boreala områdena. Avståndet mellan min nuvarande hemstad Uppsala och min barndomsstad Boden är 6 breddgrader, vilket ger en uppfattning om hur stora skillnader vi talar om.

733096main_Northern_ndvi_FINALBilden kommer från NASA. Gul färg betyder att växternas tillväxt inte förändrats
över tiden. Grön färg betyder att växternas tillväxt har ökat ca 5% per decennium
och rött anger en lika stor minskning. Blått betyder en ökning med ca 10% per
decennium. Sverige är mest grönt med lite inslag av blått.

 

Årstiderna här i norr har alltså förändrats ganska mycket under de senaste 30 åren. Forskarna har också använt klimatmodeller för att försöka förutsäga vad som kommer att hända i framtiden. De kom fram till att vid slutet på detta sekel kommer temperaturerna att motsvara de som rådde 22 breddgrader längre söderut under 1951-1980. Klimatförutsägelser varierar dock beroende på vem man frågar. Forskarna är visserligen överens om att klimatet på jorden som helhet kommer att bli varmare, men hur mycket varmare det blir och vad som kommer att hända på lokal nivå är oklart. Det är också svårt att förutsäga vad varmare temperaturer betyder för växtligheten. Växterna påverkas ju också av t.ex. vattentillgång, hur ofta det brinner och förekomsten av skadeinsekter.

Referenser:

Xu och Myneni med kollegor. Temperature and vegetation seasonality diminishment over northern lands. Nature Climate Change, publicerad online (innan tryck) 10 mars 2013. DOI: 10.1038/NCLIMATE1836

NASA. Amplified Greenhouse Effect Shifts North’s Growing Seasons

Se också Plants March North av Liz O’Connell på SciLogs

Dansa din doktorsavhandling

Att förklara sin forskning för någon annan på ett sätt som gör att den upplevs som både begriplig och fängslande kan vara förvånansvärt svårt. Kanske går det bättre om man dansar forskningen istället? Det är idén bakom den internationella tävlingen Dance your PhD. Vinnaren är den som bäst kan förklara sin doktorsavhandling genom en (videofilmad) danskoreografi. Vilken dansstil som helst går bra, men författaren till avhandlingen måste själv delta i dansen.

Hur osannolikt det än låter så har denna tävling blivit ganska populär, och har pågått i flera år vid det här laget. Har sett en del av tävlingsbidragen på YouTube. Många är riktigt duktiga dansare, men ofta är det svårt att begripa vad dansen har med avhandlingen att göra. Här har jag i alla fall hittat ett bidrag där jag tycker de lyckas rätt bra med använda lindy hop (en av mina favoritdanser) för att förklara hur man använder fotoner för att göra en ”kvantlinjal”.

The Quantum Ruler Lindy Hop

Namiböknens älvringar avslöjade

De flesta artiklar som publiceras i Nature och Science är väldigt avancerade och berör ofta något politiskt aktuellt eller medialt gångbart ämne, men fortfarande dyker det ibland upp lite mer udda historier. Norbert Juergens publicerade en artikel i veckans nummer av Science (vol. 339, s. 1618) med titeln The Biological Underpinnings of Namib Desert Fairy Circles, d.v.s. den biologiska orsaken till Namiböknens älvringar.

Älvringarna i fråga är cirkelformade hål i vegetationen, där mitten av hålet helt saknar växter. Fenomenet påminner en aning om de häxringar som förekommer i svenska trädgårdar och orsakas av svampar, men i häxringar är inte mitten av ringen tom. Vad som orsakat de namibiska älvringarna har tydligen hittills varit ett mysterium. Norbert noterade att älvringarna enbart förekommer på sandiga jordar och verkar fungera som vattenreservoarer under torrperioderna. Vattnet sugs upp av de perenner som växer i en ring runt den bara jorden i mitten.

Norbert misstänkte att fenomenet måste orsakas av något levande och han började noggrant notera vilka djurarter som förekommer i älvringarna. En sandtermit (Psammotermes allocerus) visar sig vara den enda som alltid är närvarande, och den finns dessutom även i älvringar som precis börjat bildas. Sandtermiten gräver sig ner i jorden och äter växtrötterna inne i älvringen, vilket dödar alla växter som försöker växa där. Den fortsätter även att med tiden utöka storleken på älvringen genom att äta av rötterna på växterna längst in. Resultatet av termitens ätande är inga ettåriga växter kan etablera sig på den bara jorden när regnen kommer, och perennerna längs ringkanten skyddas därmed från konkurrens. Gångarna den gräver gör också att vatten lättare tränger ner i jorden när det regnar.

Vad Norbert inte testade var att som ett experiment tillsätta sandtermiten på ett nytt ställe med rätt sorts jord och se om detta får älvringar att bildas även där, vilket skulle ha stärkt hans bevisföring i ämnet. Norberts teori är alltså att termiten är en liten jordbrukare som odlar och försvarar sitt matförråd, eller som Norbert kallar det, den utövar ”active ecosystem engineering”. Kombinationen vatten, frodig växtlighet och småkryp drar även till sig andra arter, så dessa älvringar är närmast små oaser i öknen.