Får jag presentera det köttätande svampdjuret Harpan

Långt nere i havens djup lever de mest osannolika organismer. Bland annat hittar man här köttätande svampdjur. Svampdjur är en ganska primitiv djurform som normalt brukar sitta still på havsbotten och filtrera vatten. Namnet svampdjur kommer av att de är porösa och bra på att suga upp vätska. Uppfinningen av konstgjorda disk- och tvättsvampar inspirerades av svampdjuren, så de har faktiskt haft viss praktiskt betydelse.

Det flesta svampdjur är som sagt fredliga och harmlösa varelser, men det finns undantag från denna norm. Dessa undantag ser dessutom ofta ganska bisarra ut. ”Harpsvampdjuret” (Chondrocladia lyra, the harp sponge) i videon har fått namnet eftersom upptäckarna tyckte att den ser ut som en harpa. Jag tycker mer att den ser ut som en kam, fast med små kulor längst ut på tänderna.

Chondrocladia gigantea (the giant club sponge)
Chondrocladia gigantea (the giant club sponge)

 

En annan vackert köttätande svampdjur är denna färgglada varelse, Chondrocladia gigantea. Fotot är från SERPENT Media Archive. Där anges att fotot är taget på 928m djup i Atlanten utanför Norge. Själva platsen anges som ”Atlantic>Norwegian>Midnattsol”. Midnattsol?!? Kan det möjligen vara så att någon skämtsam norrman har lurats lite med forskarna?

Deep Sea News har också skrivit om köttätande svampdjur. Där kan man hitta referenser till vetenskapliga artiklar om man vill läsa mer om köttätande svampdjur.

Vackra blommor gjorda av mineraler

Hur kommer man egentligen på idén att om man tillför koldioxid (CO2) till en vattenlösning av bariumklorid (BaCl2) och natriumsilikat (Na2SiO3) kan man skapa pyttesmå ”blommor”, trattar och vaser? ”Blommorna” består i detta fall av utfällningar av mineralerna witherit (bariumkarbonat, BaCO3) och kvarts (kiseldioxid, SiO2), och forskarna som hittade på detta lyckades till och med lära sig kontrollera utseendet på utfällningarna i detalj genom att ändra koldioxidkoncentrationen, temperaturen och lösningens pH. De kallar det för nanoteknologi, fast de små blommorna faktiskt är i mikrometerskala, snarare än nanometerskala. Se färgbilder på de små ”blommorna” här. Artikeln ”Rationally Designed Complex, Hierarchical Microarchitectures”, som nyligen publicerades i Science, kan laddas ner från författarens hemsida. Kolla på bilderna! De är underbara.

Granens arvsmassa – version (nästan) 1.0

Barrträdens gigantiska arvsmassor har länge ansetts vara för stora för att kunna avläsas och analyseras i sin helhet, men på senare år har flera parallella forskningsprojekt tagit sig an utmaningen. De största är det svenska granprojektet som främst fokuserar på svensk gran (Picea abies), ett kanadensiskt projekt som fokuserar på vitgran (Picea glauca) och ett amerikanskt projekt som främst satsar på loblollytall (Pinus taeda). Stora delar av vitgranens arvsmassa har faktiskt varit offentligt tillgängliga ett bra tag nu, men tyvärr bara i ett hopplöst opraktiskt format som man måste vara dataprogrammerare (med rejält med tillgängliga datorresurser) för att kunna utnyttja. Produktionen av den genomsekvensen publicerades officiellt den 22 maj i Bioinformatics.

Betydligt mer uppmärksamhet har publikationen av den svenska granens arvsmassa fått. Den publicerades samma dag i Nature. Svenskarnas artikel är bättre i den bemärkelsen att den innehåller en del jämförande analyser av arvsmassan. Förutom granens arvmassa har de även sekvenserat svensk tall (Pinus sylvestris), sibirisk ädelgran (Abies sibirica), en (Juniper communis), idegran (Taxus baccata) och en gnetumart (Gnetum gnemon), fast dessa sekvenser är av sämre kvalitet än gransekvenserna.

För att sammanfatta vad de kommit fram till så verkar gran ha ungefär lika många gener som andra växter. Anledningen till att barrträdsgenomen är så gigantiska verkar vara att de är fulla av så kallade transposoner. Transposoner är bitar av DNA som hoppar runt i arvsmassan, och ofta dessutom kopierar sig själva på köpet. Barrträden verkar vara sämre än många andra arter på att rensa bort dessa, med resultatet att deras arvsmassa har svällt till enorma proportioner. Transposoner kan också ställa till det för växterna när de hoppar runt. Om de hoppar in i en aktiv gen kan de i värsta fall slå sönder genen och göra den icke-funktionell. Transposoner kan vara anledningen till att många av de gener som forskarnas dataprogram identifierar i granens arvsmassa verkar ha mycket stora introner.

Gran har ungefär samma antal gener som andra växter (a). Däremot verkar intronerna vara ovanligt långa (b). Källa: Nystedt m.fl. Nature (2013)
Gran har ungefär samma antal gener som andra växter (a). Däremot verkar intronerna vara ovanligt långa (b). Källa: Nystedt m.fl., Nature, 2013

 

Tyvärr har forskarna bara lyckats sekvensera delar av granens arvsmassa, och de har faktiskt inte lyckats pussla ihop sina sekvenser till en sammanhängande DNA-sekvens. Det som finns är olika bitar av arvsmassan, avlästa var för sig. Det är alltså fortfarande i praktiken ett ”fläckvis” grangenom som nu offentliggörs. Jag testade att söka på sekvenserna från ett par opublicerade grangener jag arbetade med som doktorand. De hade lyckats identifiera snuttar av båda sekvenserna, men inte hela generna. Så det finns massor av jobb kvar att göra innan vi har ett verkligt användbart grangenom. Vill du hjälpa till? Det är bara att gå till ConGenIE-sidan och sätta igång.

Birol m.fl. (2013). Assembling the 20 Gb white spruce (Picea glauca) genome from whole-genome shotgun sequencing data. Bioinformatics. doi: 10.1093/bioinformatics/btt17 (open access)

Nystedt m.fl. (2013) The Norway spruce genome sequence and conifer genome evolution. Nature. doi:10.1038/nature12211 (open access med ”Creative Commons licence”)

My beloved Brontosaurus

Brian Switek är en äkta dinosaurienörd. Hans passion för dinosaurier märks tydligt i hans skrivande, både på hans blogg Laelaps och i boken My beloved Brontosaurus, och gör att ett ämne som skulle kunna vara rätt torrt och tråkigt blir underhållande och spännande. Jag är har onekligen ett stort intresse för det mesta som är gammalt, ju äldre desto bättre, men har aldrig haft samma brinnande intresse som Brian för just dinosaurier. Trots det gillar jag den här boken, och jag håller med Brian om att det kanske viktigaste resultatet av de senaste decenniernas dinosaurieforskning är att dinosaurier nu framstår som betydligt mycket mer intressanta och spännande varelser än de gjort tidigare.

Brians bok handlar både om de dinosaurier som en gång existerade i verkligheten och om de som har blivit ikoner inom populärkulturen. Dessa två grupper är båda fascinerande på sitt sätt, men de har inte så mycket gemensamt. Det är här Brontosaurus kommer in i bilden. Denna stora, klumpiga, dumma, träsklevande best har länge varit en av dinosaurievärldens stora kändisar, och var Brians stora favorit som barn. Han blev därför oerhört besviken när han insåg att Brontosaurus aldrig funnits i verkligheten utan skapades av en felaktig ihopmontering av skelettdelar från olika dinosaurier. Brontosaurus används i boken som en symbol för vår bild av dinosaurier, så som vi ser dem på TV, i museer, som leksaker och i reklamen. Så som vi gärna vill att de ska ha varit också i verkligheten.

Vetenskapens syn på dinosaurier stämmer rätt dåligt med populärkulturens bild av dem. För det första så var långt ifrån alla stora reptiler som levde under trias, jura och krita dinosaurier. Dessutom levde inte alla dinosaurier samtidigt. De dök upp under trias, men i början, under 30 miljoner år eller så, hade de en ganska tillbakadragen roll. Först därefter kom deras storhetstid. Denna varade dubbelt så länge (!) som hela den tid som förflutit sedan det berömda massutdöendet i slutet av krita. Och de var varken dumma eller tröga djur.

Det som finns kvar av dinosaurierna är inte mycket. Fossiliserade ben, fjädrar, fotspår, dynga och, om man har riktigt mycket tur, bon och ägg. Skeletten är sällan hela, utan snarare enstaka ben här och där, vilket gör att det ofta är svårt att veta vilka ben som tillhör vilken sorts dinosaurie (därav Brontosaurus-fiaskot). Trots det lite taskiga utgångsläget har forskarna ändå under de senaste decennierna lyckats lära sig rätt mycket om bland annat dinosauriernas sociala liv, deras fysiologi och till och med deras sjukdomar. Förutom skador så plågades de stackars djuren bland annat av parasiter och cancer, vilket man kan se spår av i skeletten.

Det finns däremot mycket man inte kan utläsa ur dinosaurieskelett. Om dinosaurierna hade läten, och hur de i sådana fall lät, är en sådan sak, vilket naturligtvis inte på något sätt hindrat folk från att försöka (åter)skapa dinosaurieläten. En annan sak som Brian påpekar att man inte kan avgöra från dinosaurieskelett är kön. Enda undantaget är om dinosaurien i fråga var gravid när den dog. Åtminstone vissa dinosaurier tog hand om sina ungar, och det brukar förutsättas att det var honornas uppgift, men det är alltså bara en gissning.

Naturligtvis tar Brian också upp det här med fjädrarna. Alla fakta tyder på att de flesta dinosaurier var fluffiga. Fluffet bestod inte av päls utan av fjädrar. Även allas favoritrovdjur T. rex var fluffig. Detta är ett faktum som tagits emot med stor irritation bland de traditionalister som föredrar de klassiska fjälliga dinosaurierna, som exempelvis Steven Spielberg i hans Jurassic Park-filmer. Till och med Brian erkänner att han har lite svårt för vissa rekonstruktioner av fluffiga dinosaurier. Vetenskapen har till och med kommit på en metod för att avgöra vilken färg dinosauriefjädrar hade, vilket jag tycker är jättehäftigt! Fjädrarna finns naturligtvis kvar hos den enda grupp av dinosaurier som överlevde massutdöendet vid slutet av krita, nämligen fåglarna, fast deras fjädrar är specialanpassade för flygning.

Som traditionen bjuder i amerikansk populärvetenskap har författaren en tendens att upprepa sig, men boken är ändå av hanterbar längd. Inbunden, i lite större pocketstorlek, är texten drygt 200 sidor. Och omslaget, som är en utvikningsbar dubbelsidig affisch, är helt underbart kitschigt och gulligt. Det enda jag egentligen har svårt för i denna bok är Brians besatthet av att i rätt stor detalj beskriva hur han kör till olika museer och utgrävningar. Vad har dessa upprepade utläggningar om bilar och vägar med saken att göra?

Skönheten och odjuret

Björkhängen
Björkhängen

Nog är pollensäsongen igång alltid. Det märks genom att ögonen börjar klia och näsan rinna så fort jag kommer utanför dörren. Alltså borde det finnas aspblommor att samla in till mina experiment. Egentligen vore det bättre att använda blommor från amerikansk jättepoppel för experimenten, men det är lite dåligt med jättepopplar här i krokarna så asp får duga.

I vanliga fall växer det asp var man än vänder sig, men när man behöver få tag i en blommande asp finns de plötsligt ingenstans. Speciellt inte själva blommorna. De irriterande björkarna däremot verkar ha hur mycket blommor (och pollen) som helst.

Även om jag inte hittade några aspblommor på dagens promenad, så hittade jag i alla fall andra fina vårblommor. Blåsippor, vitsippor och snödroppar blommade alla längs den rätt slingriga väg jag gick till mataffären.

 

Vitsippor
Vitsippor
Blåsippor

 

 

 

 

Snödroppar
Snödroppar

Nature lovar att skärpa sig

Precis som professionella vetenskapsjournalister hämtar jag mycket av de vetenskapliga nyheterna till bloggen från Nature och Science. De är de två högst rankade vetenskapliga tidskrifterna. Däremot läser jag nästan aldrig dessa tidskrifter i min roll som forskare. Där har jag ärligt talat ingen större nytta av dem.

De delar av Nature och Science som läses av forskare är främst skvallersidorna och jobbannonserna. Både Nature och Science driver förstklassiga arbetsförmedlingar för forskare. Även deras sammanfattningsartiklar (s.k. reviews) över olika forskningsområden är ofta bra och användbara. Men de vetenskapliga originalartiklarna är nästan alltid så kortfattade att de i praktiken är närmast värdelösa ur forskarperspektiv.

Det går inte att utläsa från artiklarna vad forskarna faktiskt har gjort, vilket är ett minimikrav för att en artikel ska ha något vetenskapligt värde. Artiklarna är ofta underhållande läsning på samma sätt som en kvällstidning är underhållande, och kan ge spännande idéer, men de innehåller inte tillräckligt med information för att försöken ska kunna upprepas. Resultaten går därför sällan att tillämpa i den egna forskningen vilket gör att de i praktiken är värdelösa.

Men nu går Nature ut offentligt och lovar att bättra sig. Kanske har de till slut insett att ska de i längden kunna behålla sin ställning räcker det inte med att bara förmedla vad som i princip är extra kompakta och krångligt skrivna populärvetenskapliga sammanfattningar av forskningsprojekt med stort nyhetsvärde. Då måste de också klara av att leverera en seriös vetenskaplig tidskrift som faktiskt är användbar för forskare och inte bara för journalister.

Vi får väl se om det ger någon effekt, men det är bra att Nature erkänner problemet och försöker göra en insats för att reda upp den röra de själva i allra högsta grad deltagit i att skapa. Nature har stort inflytande i den vetenskapliga världen. Det finns därför visst hopp om att deras agerande ska smitta av sig även på andra aktörer, så att vetenskapen åter kan börja följa de grundregler som alla forskare och vetenskapsredaktörer egentligen kan men alltför ofta struntar i att följa.

Nature Special: Challenges in irreproducible research

Där ingen trodde något kunde leva

Mitt examensarbete vid universitetet handlade om arkéer, närmare bestämt om en arkéart som lever i 80-gradig syra i heta källor. Det är en så extrem miljö att det enligt all logik inte borde vara möjligt att överleva där. Jag har fascinerats av dessa bisarra och oerhört tuffa småttingar ända sedan jag som universitetsstudent först hörde talas om dem. Varför hade ingen berättat om dem tidigare?

I många hundra år delade vetenskapsmännen (och de ytterst få vetenskapskvinnorna) in livet i fem riken; djur, växter, svampar, protister (= alla andra eukaryoter) och bakterier. Bakterierna kallades också för prokaryoter eftersom de, till skillnad från eukaryoterna, inte har någon cellkärna. Detta system användes fortfarande när jag var barn, trots att forskarna vid det laget hunnit bli ordentligt skeptiska till denna gamla ”sanning”.

Det var i den moderna molekylärbiologins begynnelse på 1970-talet som Carl Woese upptäckte att vissa celler som ser ut som bakterier i mikroskopet egentligen är något helt annat. I början kallades dessa för ärkebakterier och man tänkte sig att de måste vara någon sorts unik typ av bakterier, men med tiden blev det allt mer uppenbart att de så kallade ärkebakterierna inte alls är några bakterier. De är något helt annat. Och sedan 1990 har forskarna dumpat de fem rikena och övergått till att dela in allt liv på jorden i tre domäner istället: eukaryoter, bakterier och arkéer. Tyvärr tar det ett tag för vetenskapliga revolutioner att nå de svenska skolorna (har den gjort det än?), så där regerade fortfarande de fem rikena under hela 90-talet.

Arkéer finns, precis som bakterier, överallt. Bland annat lever de i de kalla och syrefattiga sedimentlagren på havsbotten. Arkéer är svårstuderade eftersom de ofta trilskas och vägrar växa i laboratoriemiljö. De få arkéer som går att odla brukar ha en metan- eller svavelbaserad ämnesomsättning, men nu har forskare upptäckt att vissa sedimentlevande arkéer istället lever på en proteindiet.

De utsöndrar enzymer som bryter ner proteiner i sedimentet till mindre bitar. Dessa mindre bitar tas sedan upp av arkécellerna genom speciella kanaler i cellmembranet för fortsatt nedbrytning och återanvändning av beståndsdelarna. Proteinerna kommer huvudsakligen från döda organismer och ansamlas i sedimenten där de ingår i en av jordens största reservoarer av organiskt kol. De sedimentlevande arkéernas nedbrytning av proteiner påverkar därför den globala kolcykeln. David Valentine uppskattar att det kan finnas 1000 000 000 000 000 000 000 000 000 arkéer som lever i havssedimenten, så det är knappast någon liten effekt vi pratar om.

Dessutom finns de inte bara i sedimenten ovanpå havsbotten. En annan grupp forskare har letat liv på helt nya ställen och funnit att det lever mikroorganismer, inklusive arkéer, även inne i själva jordskorpan. De har borrat flera hundra meter ner i 3,5 miljoner år gammal jordskorpa av basalt som ligger under sedimentet på havsbotten utanför västra USA. Där, inne i själva jordskorpan, hittade de levande mikroorganismer som verkar ha metan- och svavelbaserad ämnesomsättning. De oceaniska plattorna är den största potentiella livsmiljön på hela jorden, så detta fynd har potentiellt stor betydelse.

Än vet vi inte hur mycket liv som egentligen finns där nere, men det skulle kunna vara det första stora ekosystem på jorden som drivs av kemosyntes snarare än fotosyntes. Vilket är egentligen det vanligaste systemet? På jordytan är livet fotosyntetiskt och använder solenergi för att omvandla koldioxid till organiska molekyler. Kemosyntetiskt liv är helt oberoende av solen och använder istället energi från andra källor. I den varma havsskorpan (temperaturen ligger konstant på ungefär 64°C) frigörs energi när havsvatten tränger in i basalten och reagerar med den, och det är denna energi som verkar utgöra basen för livet där inne.

För att kontrollera att de spår av liv de hittat inne i basalten inte bara var nedbrytningsprodukter från döda organismer försökte de odla proverna på laboratoriet. De växte visserligen mycket långsamt, men de producerade mätbara mängder metan vilket visade att de innehöll levande metanogener. Livet har ännu en gång visat sig klara mer än vi trott. Finns det egentligen någon gräns för var det är möjligt att leva?

Källor:

Mark A. Lever m.fl. (2013) Evidence for Microbial Carbon and Sulfur Cycling in Deeply Buried Ridge Flank Basalt. Science 339, s. 1305. Se också kommentar av Ed Yong (Life found deep under the sea) på Nature News & Comments den 14 mars.

Karen G. Lloyd m.fl. (2013) Predominant archaea in marine sediments degrade detrital proteins. Nature 496, s. 215. Se också kommentar av David L. Valentine (Microbiology: Intraterrestrial lifestyles). Nature 496, s. 176

Carl R. Woese, Otto Kandler och Mark L. Wheelis (1990) Towards a natural system of organisms: Proposal for the domains Archaea, Bacteria, and Eucarya. PNAS 87, s. 4576

Jorden och de som bor i den

Det första många tänker på när de hör ordet jord är smuts. Ja, man blir smutsig av att hantera jord, men det är en smuts vi borde vara tacksamma för, för utan denna bruna smuts får vi gå hungriga. Sedan många tusen år tillbaka hänger vårt samhälles överlevnad på vår tillgång till bra odlingsjord. Men vad är egentligen jord för någonting?

Håkan Wallander har skrivit en hel bok om ämnet: Jord – Funderingar kring grunden för vår tillvaro. Här diskuterar han bland annat vad jord är för någonting och hur den bildas, och vad skillnaden egentligen är mellan bra och dålig odlingsjord. Håkan tar också upp  varför salt är så giftigt när det hamnar i jorden, vilket vore nyttig läsning för de tokdårar som vill salta skidspår i skogen. Fakta blandas med anekdoter, vilket gör att boken känns lättläst trots att den innehåller en hel del vetenskap.

Men boken handlar inte bara om själva jorden, utan minst lika mycket om de organismer som lever i den. Speciellt om mykorrhiza – det livsviktiga samarbetet mellan svampar och växter som är Håkans specialitet. Han förklarar i boken bland annat varför artrikedomen nog inte alls är större i en tropisk regnskog än i en svensk skog, tvärtemot vad som brukar påstås. I alla fall inte om man räknar med de varelser som lever under jorden och inte bara de som lever ovan jord.

Visserligen påstår han att landlevande växter uppstod för ungefär 400 miljoner år sedan, men den lilla missen får man nog förlåta honom. Landlevande växter fanns troligen redan under ordovicium och definitivt under silur, vilket är bra mycket tidigare än 400 miljoner år sedan. Tidigaste direkta fossila bevisen för mykorrhiza däremot är ungefär 400 miljoner år gamla, även om symbiosen troligen är ännu äldre.

Boken tar upp en hel del information som är bra att känna till för de som i olika sammanhang försöker odla växter. Bland annat påpekar han det hejdlösa lurendrejeri som pågår i blomsterhandlarna när det gäller de välfyllda hyllorna med allehanda specialgödningsmedel som påstås vara anpassade för olika växters unika näringsbehov. Vilket då unika näringsbehov? Alla sorters växter behöver i grunden samma näringsämnen för att överleva. Vilka näringsämnen det handlar om kan man slå upp i första bästa lärobok i växtfysiologi.

I och för sig kan proportionerna mellan näringsämnena i marken variera, liksom hur lättillgängliga de är, och växter är olika bra på att kunna hantera detta. De är därför olika bra på att konkurrera om utrymmet i naturen, men odlare tenderar att glömma att detta inte spelar någon roll i rabatten eller i blomkrukan. Där är nämligen den tjänstvilliga människan alltid beredd att kavla upp ärmarna och hugga i med hacka och spade för att hänsynslöst utrota alla tänkbara konkurrenter.

Läkare utan vapen

MRSA är inte nödvändigtvis den farligaste av superbakterierna, men det är absolut den mest kända. Vet du vad förkortningen står för? Multiresistenta stafylokocker? Nästan rätt, men bara nästan. Björn Ramel, författaren till Läkare utan vapen – Ett reportage om antibiotikaresistens, är utbildad läkare men arbetar även som journalist. Han berättar i boken att han svarade fel på denna fråga när han fick den av en journalistkollega.

Jag har själv läst medicinsk mikrobiologi. Det var i och för sig tio år sedan, men jag har för mig att vi fick testa oss själva för att se om vi var bärare av MRSA (det var jag inte). Precis som Björn borde jag alltså veta rätt svar, men min första tanke var ändå multiresistenta stafylokocker. Rätt svar är meticillinresistent Staphylococcus aureus.

Antibiotikaresistenta bakterier kan vara väldigt farliga, men trots det har det inte kommit ut särskilt många nya antibiotika på marknaden på många decennier. Detta är egentligen ingen nyhet, men de flesta verkar inte ha funderat särskilt mycket på vad det beror på och vad det betyder i praktiken. Hur påverkar detta problem mig? Kunskaperna om ämnet, även bland medicinare, är ganska skrala. Det är inget prioriterat problem, men det borde det nog vara.

Idag betraktas ofta infektionssjukdomar som ett mindre problem. Käka lite antibiotika så blir du frisk. Inga svårigheter och inga bieffekter. Övertygelsen om att antibiotika är ett mirakelmedel utan bieffekter har lett till en gigantisk överanvändning. Antibiotika används inte bara mot bakterieinfektioner i människor och djur, utan i alla möjliga sammanhang där den egentligen inte hör hemma. Dessutom har denna övertygelse, i kombination med ekonomiska neddragningar och överbeläggningar på sjukhus, lett till att sjukvårdspersonal har blivit mindre noga med hygienen. Resultatet är ett skolexempel på fenomenet naturligt urval. Fördelarna med att bära på och använda resistensgener, vilket kräver lite extra energi, har helt plötsligt blivit gigantiska för alla möjliga bakterier. Både bakterier som vi behöver och bakterier som kan döda oss bär på dem.

Antibiotika är inget mänskligt påhitt. Vi kopierade den från mikroorganismerna. Tyvärr verkar vi har glömt bort ett par saker. Mikroorganismerna har i årmiljarder övat sig på att försvara sig mot antibiotika. De är jäkligt bra på det! Dessutom samarbetar de och delar frikostigt med sig av sina försvar till varandra. Bakterier har nämligen för vana att gratis ge bort sina resistensgener till alla som vill ha dem. Detta kallas horisontell genöverföring. Björn liknar det vid fildelning, vilket är en ganska bra liknelse. Redan penicillinets upptäckare Alexander Fleming varnade för att felaktig användning av antibiotika gör att selektionen för antibiotikaresistenta bakterier förstärks. Och forskare har fortsatt att varna i decennier. Men är det någon som lyssnar?

Dessutom är det där med att antibiotika inte har några bieffekter helt enkelt inte sant. Även milda antibiotika har en hel del bieffekter, både för den enskilda patienten och för samhället som helhet. Människan vill gärna se sig själv som skapelsens härskare, men det är en illusion. Vi är i själva verket snarare vandrande inkubationskammare och matleverantörer för bakterier. En människokropp består av fler bakterieceller än människoceller, och utan dessa bakterier klarar vi oss rätt dåligt. Men antibiotika påverkar inte bara onda bakterier som skadar oss. De påverkar även de bakterier vi behöver för att vara friska. Så det där med att äta antibiotika när det inte verkligen behövs för att rädda ens liv är ingen riktigt lysande idé. Risken är att du gallrar bort de bakterier du behöver till fördel för helt andra bakterier som i värsta fall kan göra dig riktigt allvarligt sjuk. Dessutom har antibiotika inte alltid ens någon effekt mot de mildare infektionssjukdomar den ofta används mot. För att citera Björn Ramels bok:

”En vanlig föreställning är att bakterieinfektioner inte läker utan antibiotika, eller att medicinerna åtminstone påskyndar läkningsförloppet rejält. Det stämmer för allvarliga sjukdomar som blodförgiftning och lunginflammation, men inte för infektioner som öroninflammation, halsfluss och urinvägsinfektion. […] Barn med öroninflammation som får antibiotika blir i genomsnitt smärtfria 0,4 dagar före de som får sockerpiller, enligt en studie. I runda tal måste sexton barn behandlas för att ett av dem ska slippa ha ont i örat efter tre till sju dagar. Omvänt får antibiotikabarnen dubbelt så ofta biverkningar som diarré, illamående och hudutslag.”

Mycket tyder tyvärr på att antibiotikans tidevarv bara är en parentes i människans historia. Det innebär inte bara att infektionssjukdomar återigen kan bli ett verkligt gissel även för den rikare delen av världens befolkning. Mycket av den tekniskt avancerade moderna sjukvården är helt beroende av antibiotika. Större kirurgiska ingrepp, cancervård med kemoterapi, organtransplantationer och vård av för tidigt födda barn – alla kräver de antibiotika för att patienten ska ha en hygglig chans att överleva.

Men antibiotikaresistens är ett problem som växer långsamt, och de som råkar mest illa ut är som vanligt de fattigaste. Så det är sällan detta räknas som en nyhet i media. Problemet liknar den kommande bristen på fossil olja. Oljan kommer inte att plötsligt ta slut. Inte heller antibiotikan. Snarare sinar de långsamt samtidigt som priset gradvis stiger. Till slut kanske det blir så dyrt att en del av dagens sjukvård inte längre kan finansieras med skatter utan blir en lyx som bara de rikaste har råd med. Men någon plötslig apokalyps är inte att vänta. Och precis som med frågan om klimatet och koldioxidutsläppen verkar detta göra att det är svårt att få politiker att ta problemet riktigt på allvar.